Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

QT1+10G Datasheet(PDF) 5 Page - Quantum Research Group

Part # QT1+10G
Description  QTOUCH??SENSOR IC
Download  12 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  QUANTUM [Quantum Research Group]
Direct Link  http://www.qprox.com
Logo QUANTUM - Quantum Research Group

QT1+10G Datasheet(HTML) 5 Page - Quantum Research Group

  QT1+10G Datasheet HTML 1Page - Quantum Research Group QT1+10G Datasheet HTML 2Page - Quantum Research Group QT1+10G Datasheet HTML 3Page - Quantum Research Group QT1+10G Datasheet HTML 4Page - Quantum Research Group QT1+10G Datasheet HTML 5Page - Quantum Research Group QT1+10G Datasheet HTML 6Page - Quantum Research Group QT1+10G Datasheet HTML 7Page - Quantum Research Group QT1+10G Datasheet HTML 8Page - Quantum Research Group QT1+10G Datasheet HTML 9Page - Quantum Research Group Next Button
Zoom Inzoom in Zoom Outzoom out
 5 / 12 page
background image
On-Duration expires, whichever occurs first. If the latter occurs
first, the sensor performs a full recalibration and the output
becomes inactive until the next detection.
In this mode, two Max On-Duration timeouts are available: 10
and 60 seconds.
2.2.2 TOGGLE MODE OUTPUT
This makes the sensor respond in an on/off mode like a flip
flop. It is most useful for controlling power loads, for example in
kitchen appliances, power tools, light switches, etc.
Max On-Duration in Toggle mode is fixed at 10 seconds. When
a timeout occurs, the sensor recalibrates but leaves the output
state unchanged.
2.2.3 PULSE MODE OUTPUT
This mode generates a negative pulse of 75ms duration with
every new detection. It is most useful for 2-wire operation, but
can also be used when bussing together several devices onto
a common output line with the help of steering diodes or logic
gates, in order to control a common load from several places.
Max On-Duration is fixed at 10 seconds if in Pulse output
mode.
Note that the beeper drive does not operate in Pulse mode.
2.2.4 PIEZO ACOUSTIC DRIVE
A piezo drive signal is generated for use with a piezo sounder
immediately after a detection is made; the tone lasts for a
nominal 95ms to create a ‘tactile feedback’ sound.
The sensor drives the piezo using an H-bridge configuration for
the highest possible sound level. The piezo is connected
across pins SNS1 and SNS2 in place of Cs or in addition to a
parallel Cs capacitor. The piezo sounder should be selected to
have a peak acoustic output in the 3.5kHz to 4.5kHz region.
Since piezo sounders are merely high-K ceramic capacitors,
the sounder will double as the Cs capacitor, and the piezo's
metal disc can even act as the sensing electrode. Piezo
transducer capacitances typically range from 6nF to 30nF in
value; at the lower end of this range an additional capacitor
should be added to bring the total Cs across SNS1 and SNS2
to at least 10nF, or possibly more if Cx is above 5pF
Piezo sounders have very high, uncharacterized thermal
coefficients and should not be used if fast temperature swings
are anticipated, especially at high gains. They are also
generally unstable at high gains; even if the total value of Cs is
largely from an added capacitor the piezo can cause periodic
false detections.
The burst acquisition process induces a small but audible
voltage step across the piezo resonator, which occurs when
SNS1 and SNS2 rapidly discharge residual voltage stored on
the resonator. The resulting slight clicking sound can be greatly
reduced by placing a 470K resistor Rs in parallel with the
resonator; this acts to slowly discharge the resonator,
attenuating of the harmonic-rich audible step (Figure 2-3).
Note that the piezo drive does not operate in Pulse mode.
2.2.5 HEARTBEAT™ OUTPUT
The output has a full-time HeartBeat™ ‘health’ indicator
superimposed on it. This operates by taking 'Out' into a 3-state
mode for 350µs once before every QT burst. This output state
can be used to determine that the sensor is operating properly,
or, it can be ignored using one of several simple methods.
The HeartBeat indicator can be sampled by using a pulldown
resistor on Out, and feeding the resulting negative-going pulse
into a counter, flip flop, one-shot, or other circuit. Since Out is
normally high, a pulldown resistor will create negative
HeartBeat pulses (Figure 2-4) when the sensor is not detecting
an object; when detecting an object, the output will remain
active for the duration of the detection, and no HeartBeat pulse
will be evident.
If the sensor is wired to a microcontroller as shown in Figure
2-5, the controller can reconfigure the load resistor to either
ground or Vcc depending on the output state of the device, so
that the pulses are evident in either state.
Electromechanical devices will usually ignore this short pulse.
The pulse also has too low a duty cycle to visibly activate
LED’s. It can be filtered completely if desired, by adding an RC
timeconstant to filter the output, or if interfacing directly and
only to a high-impedance CMOS input, by doing nothing or at
most adding a small non-critical capacitor from Out to ground
(Figure 2-6).
2.2.6 OUTPUT DRIVE
The QT110’s output is active low ; it can source 1mA or sink
5mA of non-inductive current.
Care should be taken when the IC and the load are both
powered from the same supply, and the supply is minimally
regulated. The device derives its internal references from the
power supply, and sensitivity shifts can occur with changes in
Vdd, as happens when loads are switched on. This can induce
detection ‘cycling’, whereby an object is detected, the load is
turned on, the supply sags, the detection is no longer sensed,
LQ
5
QT110 R1.04/0405
Figure 2-2 Powering From a CMOS Port Pin
0.01µF
CMOS
microcontroller
OUT
P O RT X .m
P O RT X .n
Vdd
Vss
QT110
Figure 2-3 Damping Piezo Clicks with Rs
3
46
5
1
7
2
OUT
OPT2
GAIN
SNS2
SNS1
Vss
Vdd
8
OPT1
SENSING
ELECTRODE
Cx
Rs
+2.5 ~ +5
RE
10s
Vdd
Gnd
Pulse
10s
Gnd
Gnd
Toggle
60s
Gnd
Vdd
DC Out
10s
Vdd
Vdd
DC Out
Max On-
Duration
Tie
Pin 4 to:
Tie
Pin 3 to:
Table 2-1 Output Mode Strap Options


Similar Part No. - QT1+10G

ManufacturerPart #DatasheetDescription
logo
Quantum Research Group
QT1+T+G QUANTUM-QT1+T+G Datasheet
421Kb / 14P
   CHARGE-TRANSFER TOUCH SENSOR
More results

Similar Description - QT1+10G

ManufacturerPart #DatasheetDescription
logo
ATMEL Corporation
AT42QT2100-AU ATMEL-AT42QT2100-AU Datasheet
478Kb / 44P
   QTouch Touch Sensor IC
AT42QT2100 ATMEL-AT42QT2100_14 Datasheet
478Kb / 44P
   QTouch Touch Sensor IC
AT42QT2100 ATMEL-AT42QT2100 Datasheet
478Kb / 44P
   QTouch Touch Sensor IC
AT42QT1040 ATMEL-AT42QT1040 Datasheet
323Kb / 18P
   QTouch??4-key Sensor IC
logo
Quantum Research Group
QT240 QUANTUM-QT240 Datasheet
258Kb / 12P
   4 KEY QTOUCH SENSOR IC
QT240-ISSG QUANTUM-QT240-ISSG Datasheet
277Kb / 12P
   4 KEY QTOUCH SENSOR IC
QT220 QUANTUM-QT220 Datasheet
326Kb / 12P
   2 KEY QTOUCH SENSOR IC
QT1103 QUANTUM-QT1103 Datasheet
287Kb / 22P
   QTOUCH??10-KEY SENSOR IC
logo
ATMEL Corporation
AT42QT1111MU ATMEL-AT42QT1111MU Datasheet
701Kb / 50P
   QTouch??11-key Sensor IC
logo
Quantum Research Group
QT1100A QUANTUM-QT1100A Datasheet
561Kb / 42P
   10 KEY QTOUCH SENSOR IC
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com