Electronic Components Datasheet Search |
|
QT110-IG Datasheet(PDF) 4 Page - Quantum Research Group |
|
QT110-IG Datasheet(HTML) 4 Page - Quantum Research Group |
4 / 12 page 2 - QT110 SPECIFICS 2.1 SIGNAL PROCESSING The QT110 processes all signals using a number of algorithms pioneered by Quantum. The algorithms are specifically designed to provide for high 'survivability' in the face of all kinds of adverse environmental changes. 2.1.1 DRIFT COMPENSATION ALGORITHM Signal drift can occur because of changes in Cx and Cs over time. It is crucial that drift be compensated for, otherwise false detections, non-detections, and sensitivity shifts will follow. Cs drift has almost no effect on gain since the threshold method used is ratiometric. However Cs drift can still cause false detections if the drift occurs rapidly. Drift compensation (Figure 2-1) is performed by making the reference level track the raw signal at a slow rate, but only while there is no detection in effect. The rate of adjustment must be performed slowly, otherwise legitimate detections could be ignored. The QT110 drift compensates using a slew-rate limited change to the reference level; the threshold and hysteresis values are slaved to this reference. Once an object is sensed, the drift compensation mechanism ceases since the signal is legitimately high, and therefore should not cause the reference level to change. The QT110's drift compensation is 'asymmetric': the reference level drift-compensates in one direction faster than it does in the other. Specifically, it compensates faster for decreasing signals than for increasing signals. Increasing signals should not be compensated for quickly, since an approaching finger could be compensated for partially or entirely before even touching the sense pad. However, an obstruction over the sense pad, for which the sensor has already made full allowance for, could suddenly be removed leaving the sensor with an artificially elevated reference level and thus become insensitive to touch. In this latter case, the sensor will compensate for the object's removal very quickly, usually in only a few seconds. 2.1.2 THRESHOLD CALCULATION Sensitivity is dependent on the threshold level as well as ADC gain; threshold in turn is based on the internal signal reference level plus a small differential value. The threshold value is established as a percentage of the absolute signal level. Thus, sensitivity remains constant even if Cs is altered dramatically, so long as electrode coupling to the user remains constant. Furthermore, as Cx and Cs drift, the threshold level is automatically recomputed in real time so that it is never in error. The QT110 employs a hysteresis dropout below the threshold level of 50% of the delta between the reference and threshold levels. The threshold setting is determined by option jumper; see Section 1.3.4. 2.1.3 MAX ON-DURATION If an object or material obstructs the sense pad the signal may rise enough to create a detection, preventing further operation. To prevent this, the sensor includes a timer which monitors detections. If a detection exceeds the timer setting, the timer causes the sensor to perform a full recalibration. This is known as the Max On-Duration feature. After the Max On-Duration interval, the sensor will once again function normally, even if partially or fully obstructed, to the best of its ability given electrode conditions. There are two nominal timeout durations available via strap option: 10 and 60 seconds. The accuracy of these timeouts is approximate. 2.1.4 DETECTION INTEGRATOR It is desirable to suppress detections generated by electrical noise or from quick brushes with an object. To accomplish this, the QT110 incorporates a detect integration counter that increments with each detection until a limit is reached, after which the output is activated. If no detection is sensed prior to the final count, the counter is reset immediately to zero. In the QT110, the required count is 4. The Detection Integrator can also be viewed as a 'consensus' filter, that requires four detections in four successive bursts to create an output. As the basic burst spacing is 75ms, if this spacing was maintained throughout all 4 counts the sensor would react very slowly. In the QT110, after an initial detection is sensed, the remaining three bursts are spaced about 20ms apart, so that the slowest reaction time possible is 75+20+20+20 or 135ms and the fastest possible is 60ms, depending on where in the initial burst interval the contact first occurred. The response time will thus average about 95ms. 2.1.5 FORCED SENSOR RECALIBRATION The QT110 has no recalibration pin; a forced recalibration is accomplished only when the device is powered up. However, the supply drain is so low it is a simple matter to treat the entire IC as a controllable load; simply driving the QT110's Vdd pin directly from another logic gate or a microprocessor port (Figure 2-2) will serve as both power and 'forced recal'. The source resistance of most CMOS gates and microprocessors is low enough to provide direct power without any problems. Almost any CMOS logic gate can directly power the QT110. A 0.01uF minimum bypass capacitor close to the device is essential; without it the device can break into high frequency oscillation. Option strap configurations are read by the QT110 only on powerup. Configurations can only be changed by powering the QT110 down and back up again; again, a microcontroller can directly alter most of the configurations and cycle power to put them in effect. 2.2 OUTPUT FEATURES The devices are designed for maximum flexibility and can accommodate most popular sensing requirements. These are selectable using strap options on pins OPT1 and OPT2. All options are shown in Table 2-1. OPT1 and OPT2 should never be left floating. If they are floated, the device will draw excess power and the options will not be properly read on powerup. Intentionally, there are no pullup resistors on these lines, since pullup resistors add to power drain if the pin(s) are tied low. 2.2.1 DC MODE OUTPUT The output of the device can respond in a DC mode, where the output is active-low upon detection. The output will remain active for the duration of the detection, or until the Max LQ 4 QT110 R1.04/0405 Figure 2-1 Drift Compensation Threshold Signal Hysteresis Reference Output |
Similar Part No. - QT110-IG |
|
Similar Description - QT110-IG |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.NET |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |