Electronic Components Datasheet Search |
|
AT42QT1111-MU Datasheet(PDF) 8 Page - ATMEL Corporation |
|
|
AT42QT1111-MU Datasheet(HTML) 8 Page - ATMEL Corporation |
8 / 50 page 8 9571A–AT42–02/10 AT42QT1111-MU/AT42QT1111-AU 3. Wiring and Parts 3.1 Cs Sample Capacitors Cs0 – Cs10 are the charge sensing sample capacitors. Normally they are identical in nominal value. The optimal Cs values depend on the thickness of the panel and its dielectric constant. Thicker panels require larger values of Cs. Values can be in the range 2.2 nF (for faster operation) to 33 nF (for best sensitivity); typical values are 4.7 nF to 10 nF. The value of Cs should be chosen so that a light touch on a key produces a reduction of ~20 to 30 in the key signal value (see Section 6.8 on page 26). The chosen Cs value should never be so large that the key signals exceed ~1000, as reported by the chip in the debug data. The Cs capacitors must be X7R or PPS film type, for stability. For consistent sensitivity, they should have a 10 percent tolerance. Twenty percent tolerance may cause small differences in sensitivity from key to key and unit to unit. If a key is not used, the Cs capacitor may be omitted. 3.2 Rs Resistors The series resistors Rs0 – Rs10 are inline with the electrode connections and should be used to limit electrostatic discharge (ESD) currents and to suppress radio frequency (RF) interference. Values should be approximately 2 k to 20 k each; a typical value is 4.7 k. Although these resistors may be omitted, the device may become susceptible to external noise or radio frequency interference (RFI). For details of how to select these resistors see the Application Note QTAN0002, Secrets of a Successful QTouch™ Design, downloadable from the Touch Technology area of Atmel’s website, www.atmel.com. 3.3 LED Traces and Other Switching Signals Digital switching signals near the sense lines can induce transients into the acquired signals, deteriorating the SNR performance of the device. Such signals should be routed away from the sensing traces and electrodes, or the design should be such that these lines are not switched during the course of signal acquisition (bursts). LED terminals which are multiplexed or switched into a floating state, and which are within, or physically very near, a key (even if on another nearby PCB) should be bypassed to either Vss or Vdd with at least a 1 nF capacitor. This is to suppress capacitive coupling effects which can induce false signal shifts. The bypass capacitor does not need to be next to the LED, in fact it can be quite distant. The bypass capacitor is noncritical and can be of any type. LED terminals which are constantly connected to Vss or Vdd do not need further bypassing. 3.4 PCB Cleanliness Modern no-clean flux is generally compatible with capacitive sensing circuits. CAUTION: If a PCB is reworked to correct soldering faults relating to the QT1111, or to any associated traces or components, be sure that you fully understand the nature of the flux used during the rework process. Leakage currents from hygroscopic ionic residues can stop capacitive sensors from functioning. If you have any doubts, a thorough cleaning after rework may be the only safe option. |
Similar Part No. - AT42QT1111-MU |
|
Similar Description - AT42QT1111-MU |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.NET |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |